direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C3⋊D20, D30⋊9C23, C30.47C24, (C2×C6)⋊9D20, C30⋊5(C2×D4), C6⋊3(C2×D20), (C2×C30)⋊14D4, C15⋊6(C22×D4), C3⋊3(C22×D20), (C6×D5)⋊7C23, (C23×D5)⋊7S3, D10⋊7(C22×S3), (C22×D5)⋊15D6, (C23×D15)⋊8C2, C23.71(S3×D5), C6.47(C23×D5), (C2×Dic3)⋊24D10, C10.47(S3×C23), Dic3⋊5(C22×D5), (C22×Dic3)⋊9D5, (C5×Dic3)⋊8C23, (C2×C30).250C23, (C22×C10).119D6, (C22×C6).102D10, (C10×Dic3)⋊31C22, (C22×D15)⋊20C22, (C22×C30).88C22, C10⋊1(C2×C3⋊D4), (D5×C22×C6)⋊4C2, C5⋊1(C22×C3⋊D4), (D5×C2×C6)⋊18C22, C2.47(C22×S3×D5), (Dic3×C2×C10)⋊11C2, (C2×C10)⋊13(C3⋊D4), C22.110(C2×S3×D5), (C2×C6).256(C22×D5), (C2×C10).254(C22×S3), SmallGroup(480,1119)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C15 — C30 — C6×D5 — C3⋊D20 — C2×C3⋊D20 — C22×C3⋊D20 |
Generators and relations for C22×C3⋊D20
G = < a,b,c,d,e | a2=b2=c3=d20=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 2684 in 472 conjugacy classes, 148 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, Dic3, D6, C2×C6, C2×C6, C15, C22×C4, C2×D4, C24, C20, D10, D10, C2×C10, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22×C6, C3×D5, D15, C30, C30, C22×D4, D20, C2×C20, C22×D5, C22×D5, C22×C10, C22×Dic3, C2×C3⋊D4, S3×C23, C23×C6, C5×Dic3, C6×D5, C6×D5, D30, D30, C2×C30, C2×D20, C22×C20, C23×D5, C23×D5, C22×C3⋊D4, C3⋊D20, C10×Dic3, D5×C2×C6, D5×C2×C6, C22×D15, C22×D15, C22×C30, C22×D20, C2×C3⋊D20, Dic3×C2×C10, D5×C22×C6, C23×D15, C22×C3⋊D20
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C24, D10, C3⋊D4, C22×S3, C22×D4, D20, C22×D5, C2×C3⋊D4, S3×C23, S3×D5, C2×D20, C23×D5, C22×C3⋊D4, C3⋊D20, C2×S3×D5, C22×D20, C2×C3⋊D20, C22×S3×D5, C22×C3⋊D20
(1 214)(2 215)(3 216)(4 217)(5 218)(6 219)(7 220)(8 201)(9 202)(10 203)(11 204)(12 205)(13 206)(14 207)(15 208)(16 209)(17 210)(18 211)(19 212)(20 213)(21 98)(22 99)(23 100)(24 81)(25 82)(26 83)(27 84)(28 85)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 127)(60 128)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 141)(70 142)(71 143)(72 144)(73 145)(74 146)(75 147)(76 148)(77 149)(78 150)(79 151)(80 152)(101 199)(102 200)(103 181)(104 182)(105 183)(106 184)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)(113 191)(114 192)(115 193)(116 194)(117 195)(118 196)(119 197)(120 198)(161 233)(162 234)(163 235)(164 236)(165 237)(166 238)(167 239)(168 240)(169 221)(170 222)(171 223)(172 224)(173 225)(174 226)(175 227)(176 228)(177 229)(178 230)(179 231)(180 232)
(1 137)(2 138)(3 139)(4 140)(5 121)(6 122)(7 123)(8 124)(9 125)(10 126)(11 127)(12 128)(13 129)(14 130)(15 131)(16 132)(17 133)(18 134)(19 135)(20 136)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 141)(28 142)(29 143)(30 144)(31 145)(32 146)(33 147)(34 148)(35 149)(36 150)(37 151)(38 152)(39 153)(40 154)(41 206)(42 207)(43 208)(44 209)(45 210)(46 211)(47 212)(48 213)(49 214)(50 215)(51 216)(52 217)(53 218)(54 219)(55 220)(56 201)(57 202)(58 203)(59 204)(60 205)(61 96)(62 97)(63 98)(64 99)(65 100)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(101 239)(102 240)(103 221)(104 222)(105 223)(106 224)(107 225)(108 226)(109 227)(110 228)(111 229)(112 230)(113 231)(114 232)(115 233)(116 234)(117 235)(118 236)(119 237)(120 238)(161 193)(162 194)(163 195)(164 196)(165 197)(166 198)(167 199)(168 200)(169 181)(170 182)(171 183)(172 184)(173 185)(174 186)(175 187)(176 188)(177 189)(178 190)(179 191)(180 192)
(1 99 224)(2 225 100)(3 81 226)(4 227 82)(5 83 228)(6 229 84)(7 85 230)(8 231 86)(9 87 232)(10 233 88)(11 89 234)(12 235 90)(13 91 236)(14 237 92)(15 93 238)(16 239 94)(17 95 240)(18 221 96)(19 97 222)(20 223 98)(21 213 171)(22 172 214)(23 215 173)(24 174 216)(25 217 175)(26 176 218)(27 219 177)(28 178 220)(29 201 179)(30 180 202)(31 203 161)(32 162 204)(33 205 163)(34 164 206)(35 207 165)(36 166 208)(37 209 167)(38 168 210)(39 211 169)(40 170 212)(41 148 196)(42 197 149)(43 150 198)(44 199 151)(45 152 200)(46 181 153)(47 154 182)(48 183 155)(49 156 184)(50 185 157)(51 158 186)(52 187 159)(53 160 188)(54 189 141)(55 142 190)(56 191 143)(57 144 192)(58 193 145)(59 146 194)(60 195 147)(61 134 103)(62 104 135)(63 136 105)(64 106 137)(65 138 107)(66 108 139)(67 140 109)(68 110 121)(69 122 111)(70 112 123)(71 124 113)(72 114 125)(73 126 115)(74 116 127)(75 128 117)(76 118 129)(77 130 119)(78 120 131)(79 132 101)(80 102 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 203)(2 202)(3 201)(4 220)(5 219)(6 218)(7 217)(8 216)(9 215)(10 214)(11 213)(12 212)(13 211)(14 210)(15 209)(16 208)(17 207)(18 206)(19 205)(20 204)(21 89)(22 88)(23 87)(24 86)(25 85)(26 84)(27 83)(28 82)(29 81)(30 100)(31 99)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 90)(41 134)(42 133)(43 132)(44 131)(45 130)(46 129)(47 128)(48 127)(49 126)(50 125)(51 124)(52 123)(53 122)(54 121)(55 140)(56 139)(57 138)(58 137)(59 136)(60 135)(61 148)(62 147)(63 146)(64 145)(65 144)(66 143)(67 142)(68 141)(69 160)(70 159)(71 158)(72 157)(73 156)(74 155)(75 154)(76 153)(77 152)(78 151)(79 150)(80 149)(101 198)(102 197)(103 196)(104 195)(105 194)(106 193)(107 192)(108 191)(109 190)(110 189)(111 188)(112 187)(113 186)(114 185)(115 184)(116 183)(117 182)(118 181)(119 200)(120 199)(161 224)(162 223)(163 222)(164 221)(165 240)(166 239)(167 238)(168 237)(169 236)(170 235)(171 234)(172 233)(173 232)(174 231)(175 230)(176 229)(177 228)(178 227)(179 226)(180 225)
G:=sub<Sym(240)| (1,214)(2,215)(3,216)(4,217)(5,218)(6,219)(7,220)(8,201)(9,202)(10,203)(11,204)(12,205)(13,206)(14,207)(15,208)(16,209)(17,210)(18,211)(19,212)(20,213)(21,98)(22,99)(23,100)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,199)(102,200)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,191)(114,192)(115,193)(116,194)(117,195)(118,196)(119,197)(120,198)(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)(168,240)(169,221)(170,222)(171,223)(172,224)(173,225)(174,226)(175,227)(176,228)(177,229)(178,230)(179,231)(180,232), (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,141)(28,142)(29,143)(30,144)(31,145)(32,146)(33,147)(34,148)(35,149)(36,150)(37,151)(38,152)(39,153)(40,154)(41,206)(42,207)(43,208)(44,209)(45,210)(46,211)(47,212)(48,213)(49,214)(50,215)(51,216)(52,217)(53,218)(54,219)(55,220)(56,201)(57,202)(58,203)(59,204)(60,205)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(101,239)(102,240)(103,221)(104,222)(105,223)(106,224)(107,225)(108,226)(109,227)(110,228)(111,229)(112,230)(113,231)(114,232)(115,233)(116,234)(117,235)(118,236)(119,237)(120,238)(161,193)(162,194)(163,195)(164,196)(165,197)(166,198)(167,199)(168,200)(169,181)(170,182)(171,183)(172,184)(173,185)(174,186)(175,187)(176,188)(177,189)(178,190)(179,191)(180,192), (1,99,224)(2,225,100)(3,81,226)(4,227,82)(5,83,228)(6,229,84)(7,85,230)(8,231,86)(9,87,232)(10,233,88)(11,89,234)(12,235,90)(13,91,236)(14,237,92)(15,93,238)(16,239,94)(17,95,240)(18,221,96)(19,97,222)(20,223,98)(21,213,171)(22,172,214)(23,215,173)(24,174,216)(25,217,175)(26,176,218)(27,219,177)(28,178,220)(29,201,179)(30,180,202)(31,203,161)(32,162,204)(33,205,163)(34,164,206)(35,207,165)(36,166,208)(37,209,167)(38,168,210)(39,211,169)(40,170,212)(41,148,196)(42,197,149)(43,150,198)(44,199,151)(45,152,200)(46,181,153)(47,154,182)(48,183,155)(49,156,184)(50,185,157)(51,158,186)(52,187,159)(53,160,188)(54,189,141)(55,142,190)(56,191,143)(57,144,192)(58,193,145)(59,146,194)(60,195,147)(61,134,103)(62,104,135)(63,136,105)(64,106,137)(65,138,107)(66,108,139)(67,140,109)(68,110,121)(69,122,111)(70,112,123)(71,124,113)(72,114,125)(73,126,115)(74,116,127)(75,128,117)(76,118,129)(77,130,119)(78,120,131)(79,132,101)(80,102,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,203)(2,202)(3,201)(4,220)(5,219)(6,218)(7,217)(8,216)(9,215)(10,214)(11,213)(12,212)(13,211)(14,210)(15,209)(16,208)(17,207)(18,206)(19,205)(20,204)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,134)(42,133)(43,132)(44,131)(45,130)(46,129)(47,128)(48,127)(49,126)(50,125)(51,124)(52,123)(53,122)(54,121)(55,140)(56,139)(57,138)(58,137)(59,136)(60,135)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,160)(70,159)(71,158)(72,157)(73,156)(74,155)(75,154)(76,153)(77,152)(78,151)(79,150)(80,149)(101,198)(102,197)(103,196)(104,195)(105,194)(106,193)(107,192)(108,191)(109,190)(110,189)(111,188)(112,187)(113,186)(114,185)(115,184)(116,183)(117,182)(118,181)(119,200)(120,199)(161,224)(162,223)(163,222)(164,221)(165,240)(166,239)(167,238)(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)(174,231)(175,230)(176,229)(177,228)(178,227)(179,226)(180,225)>;
G:=Group( (1,214)(2,215)(3,216)(4,217)(5,218)(6,219)(7,220)(8,201)(9,202)(10,203)(11,204)(12,205)(13,206)(14,207)(15,208)(16,209)(17,210)(18,211)(19,212)(20,213)(21,98)(22,99)(23,100)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,141)(70,142)(71,143)(72,144)(73,145)(74,146)(75,147)(76,148)(77,149)(78,150)(79,151)(80,152)(101,199)(102,200)(103,181)(104,182)(105,183)(106,184)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190)(113,191)(114,192)(115,193)(116,194)(117,195)(118,196)(119,197)(120,198)(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)(168,240)(169,221)(170,222)(171,223)(172,224)(173,225)(174,226)(175,227)(176,228)(177,229)(178,230)(179,231)(180,232), (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,141)(28,142)(29,143)(30,144)(31,145)(32,146)(33,147)(34,148)(35,149)(36,150)(37,151)(38,152)(39,153)(40,154)(41,206)(42,207)(43,208)(44,209)(45,210)(46,211)(47,212)(48,213)(49,214)(50,215)(51,216)(52,217)(53,218)(54,219)(55,220)(56,201)(57,202)(58,203)(59,204)(60,205)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(101,239)(102,240)(103,221)(104,222)(105,223)(106,224)(107,225)(108,226)(109,227)(110,228)(111,229)(112,230)(113,231)(114,232)(115,233)(116,234)(117,235)(118,236)(119,237)(120,238)(161,193)(162,194)(163,195)(164,196)(165,197)(166,198)(167,199)(168,200)(169,181)(170,182)(171,183)(172,184)(173,185)(174,186)(175,187)(176,188)(177,189)(178,190)(179,191)(180,192), (1,99,224)(2,225,100)(3,81,226)(4,227,82)(5,83,228)(6,229,84)(7,85,230)(8,231,86)(9,87,232)(10,233,88)(11,89,234)(12,235,90)(13,91,236)(14,237,92)(15,93,238)(16,239,94)(17,95,240)(18,221,96)(19,97,222)(20,223,98)(21,213,171)(22,172,214)(23,215,173)(24,174,216)(25,217,175)(26,176,218)(27,219,177)(28,178,220)(29,201,179)(30,180,202)(31,203,161)(32,162,204)(33,205,163)(34,164,206)(35,207,165)(36,166,208)(37,209,167)(38,168,210)(39,211,169)(40,170,212)(41,148,196)(42,197,149)(43,150,198)(44,199,151)(45,152,200)(46,181,153)(47,154,182)(48,183,155)(49,156,184)(50,185,157)(51,158,186)(52,187,159)(53,160,188)(54,189,141)(55,142,190)(56,191,143)(57,144,192)(58,193,145)(59,146,194)(60,195,147)(61,134,103)(62,104,135)(63,136,105)(64,106,137)(65,138,107)(66,108,139)(67,140,109)(68,110,121)(69,122,111)(70,112,123)(71,124,113)(72,114,125)(73,126,115)(74,116,127)(75,128,117)(76,118,129)(77,130,119)(78,120,131)(79,132,101)(80,102,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,203)(2,202)(3,201)(4,220)(5,219)(6,218)(7,217)(8,216)(9,215)(10,214)(11,213)(12,212)(13,211)(14,210)(15,209)(16,208)(17,207)(18,206)(19,205)(20,204)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,134)(42,133)(43,132)(44,131)(45,130)(46,129)(47,128)(48,127)(49,126)(50,125)(51,124)(52,123)(53,122)(54,121)(55,140)(56,139)(57,138)(58,137)(59,136)(60,135)(61,148)(62,147)(63,146)(64,145)(65,144)(66,143)(67,142)(68,141)(69,160)(70,159)(71,158)(72,157)(73,156)(74,155)(75,154)(76,153)(77,152)(78,151)(79,150)(80,149)(101,198)(102,197)(103,196)(104,195)(105,194)(106,193)(107,192)(108,191)(109,190)(110,189)(111,188)(112,187)(113,186)(114,185)(115,184)(116,183)(117,182)(118,181)(119,200)(120,199)(161,224)(162,223)(163,222)(164,221)(165,240)(166,239)(167,238)(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)(174,231)(175,230)(176,229)(177,228)(178,227)(179,226)(180,225) );
G=PermutationGroup([[(1,214),(2,215),(3,216),(4,217),(5,218),(6,219),(7,220),(8,201),(9,202),(10,203),(11,204),(12,205),(13,206),(14,207),(15,208),(16,209),(17,210),(18,211),(19,212),(20,213),(21,98),(22,99),(23,100),(24,81),(25,82),(26,83),(27,84),(28,85),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,127),(60,128),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,141),(70,142),(71,143),(72,144),(73,145),(74,146),(75,147),(76,148),(77,149),(78,150),(79,151),(80,152),(101,199),(102,200),(103,181),(104,182),(105,183),(106,184),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190),(113,191),(114,192),(115,193),(116,194),(117,195),(118,196),(119,197),(120,198),(161,233),(162,234),(163,235),(164,236),(165,237),(166,238),(167,239),(168,240),(169,221),(170,222),(171,223),(172,224),(173,225),(174,226),(175,227),(176,228),(177,229),(178,230),(179,231),(180,232)], [(1,137),(2,138),(3,139),(4,140),(5,121),(6,122),(7,123),(8,124),(9,125),(10,126),(11,127),(12,128),(13,129),(14,130),(15,131),(16,132),(17,133),(18,134),(19,135),(20,136),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,141),(28,142),(29,143),(30,144),(31,145),(32,146),(33,147),(34,148),(35,149),(36,150),(37,151),(38,152),(39,153),(40,154),(41,206),(42,207),(43,208),(44,209),(45,210),(46,211),(47,212),(48,213),(49,214),(50,215),(51,216),(52,217),(53,218),(54,219),(55,220),(56,201),(57,202),(58,203),(59,204),(60,205),(61,96),(62,97),(63,98),(64,99),(65,100),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(101,239),(102,240),(103,221),(104,222),(105,223),(106,224),(107,225),(108,226),(109,227),(110,228),(111,229),(112,230),(113,231),(114,232),(115,233),(116,234),(117,235),(118,236),(119,237),(120,238),(161,193),(162,194),(163,195),(164,196),(165,197),(166,198),(167,199),(168,200),(169,181),(170,182),(171,183),(172,184),(173,185),(174,186),(175,187),(176,188),(177,189),(178,190),(179,191),(180,192)], [(1,99,224),(2,225,100),(3,81,226),(4,227,82),(5,83,228),(6,229,84),(7,85,230),(8,231,86),(9,87,232),(10,233,88),(11,89,234),(12,235,90),(13,91,236),(14,237,92),(15,93,238),(16,239,94),(17,95,240),(18,221,96),(19,97,222),(20,223,98),(21,213,171),(22,172,214),(23,215,173),(24,174,216),(25,217,175),(26,176,218),(27,219,177),(28,178,220),(29,201,179),(30,180,202),(31,203,161),(32,162,204),(33,205,163),(34,164,206),(35,207,165),(36,166,208),(37,209,167),(38,168,210),(39,211,169),(40,170,212),(41,148,196),(42,197,149),(43,150,198),(44,199,151),(45,152,200),(46,181,153),(47,154,182),(48,183,155),(49,156,184),(50,185,157),(51,158,186),(52,187,159),(53,160,188),(54,189,141),(55,142,190),(56,191,143),(57,144,192),(58,193,145),(59,146,194),(60,195,147),(61,134,103),(62,104,135),(63,136,105),(64,106,137),(65,138,107),(66,108,139),(67,140,109),(68,110,121),(69,122,111),(70,112,123),(71,124,113),(72,114,125),(73,126,115),(74,116,127),(75,128,117),(76,118,129),(77,130,119),(78,120,131),(79,132,101),(80,102,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,203),(2,202),(3,201),(4,220),(5,219),(6,218),(7,217),(8,216),(9,215),(10,214),(11,213),(12,212),(13,211),(14,210),(15,209),(16,208),(17,207),(18,206),(19,205),(20,204),(21,89),(22,88),(23,87),(24,86),(25,85),(26,84),(27,83),(28,82),(29,81),(30,100),(31,99),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,90),(41,134),(42,133),(43,132),(44,131),(45,130),(46,129),(47,128),(48,127),(49,126),(50,125),(51,124),(52,123),(53,122),(54,121),(55,140),(56,139),(57,138),(58,137),(59,136),(60,135),(61,148),(62,147),(63,146),(64,145),(65,144),(66,143),(67,142),(68,141),(69,160),(70,159),(71,158),(72,157),(73,156),(74,155),(75,154),(76,153),(77,152),(78,151),(79,150),(80,149),(101,198),(102,197),(103,196),(104,195),(105,194),(106,193),(107,192),(108,191),(109,190),(110,189),(111,188),(112,187),(113,186),(114,185),(115,184),(116,183),(117,182),(118,181),(119,200),(120,199),(161,224),(162,223),(163,222),(164,221),(165,240),(166,239),(167,238),(168,237),(169,236),(170,235),(171,234),(172,233),(173,232),(174,231),(175,230),(176,229),(177,228),(178,227),(179,226),(180,225)]])
84 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6A | ··· | 6G | 6H | ··· | 6O | 10A | ··· | 10N | 15A | 15B | 20A | ··· | 20P | 30A | ··· | 30N |
| order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | ··· | 6 | 6 | ··· | 6 | 10 | ··· | 10 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 |
| size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 30 | 30 | 30 | 30 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | 4 | 6 | ··· | 6 | 4 | ··· | 4 |
84 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| image | C1 | C2 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D6 | D10 | D10 | C3⋊D4 | D20 | S3×D5 | C3⋊D20 | C2×S3×D5 |
| kernel | C22×C3⋊D20 | C2×C3⋊D20 | Dic3×C2×C10 | D5×C22×C6 | C23×D15 | C23×D5 | C2×C30 | C22×Dic3 | C22×D5 | C22×C10 | C2×Dic3 | C22×C6 | C2×C10 | C2×C6 | C23 | C22 | C22 |
| # reps | 1 | 12 | 1 | 1 | 1 | 1 | 4 | 2 | 6 | 1 | 12 | 2 | 8 | 16 | 2 | 8 | 6 |
Matrix representation of C22×C3⋊D20 ►in GL5(𝔽61)
| 60 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 60 | 0 |
| 0 | 0 | 0 | 0 | 60 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 | 0 |
| 0 | 0 | 60 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 47 | 0 |
| 0 | 0 | 0 | 0 | 13 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 60 | 0 | 0 |
| 0 | 1 | 17 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 60 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 44 | 60 | 0 | 0 |
| 0 | 44 | 17 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,47,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,60,17,0,0,0,0,0,0,60,0,0,0,1,0],[1,0,0,0,0,0,44,44,0,0,0,60,17,0,0,0,0,0,0,1,0,0,0,1,0] >;
C22×C3⋊D20 in GAP, Magma, Sage, TeX
C_2^2\times C_3\rtimes D_{20} % in TeX
G:=Group("C2^2xC3:D20"); // GroupNames label
G:=SmallGroup(480,1119);
// by ID
G=gap.SmallGroup(480,1119);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations